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Abstract

Generalizable person Re-Identification (RelD) has at-
tracted growing attention in recent computer vision commu-
nity, as it offers ready-to-use RelD models without the need
for model retraining in new environments. In this work, we
introduce causality into person RelD and propose a novel
generalizable framework, named Domain Invariant Repre-
sentations for generalizable person Re-Identification (DIR-
RelD). We assume the data generation process is controlled
by two sets of factors, i.e. identity-specific factors contain-
ing identity related cues, and domain-specific factors de-
scribing other scene-related information which cause dis-
tribution shifts across domains. With the assumption above,
a novel Multi-Domain Disentangled Adversarial Network
(MDDAN) is designed to disentangle these two sets of fac-
tors. Furthermore, a Causal Data Augmentation (CDA)
block is proposed to perform feature-level data augmen-
tation for better domain-invariant representations, which
can be explained as interventions on latent factors from a
causal learning perspective. Extensive experiments have
been conducted, showing that DIR-RelD outperforms state-
of-the-art methods on large-scale domain generalization
(DG) RelID benchmarks. Moreover, a theoretical analysis
is provided for a better understanding of our method.

1. Introduction

Person Re-IDentification (ReID) aims at matching per-
son images of the same identity across multiple camera
views. In earlier works, most ReID methods are trained
and tested on the same dataset, termed fully-supervised
methods [80, 83], or tested on new target domains differ-
ent from the training one, termed domain adaptation (DA)
methods [41, 52]. Although recent fully-supervised meth-
ods have achieved remarkable performance, they tend to fail
catastrophically when tested in out-of-distribution (OOD)
settings. Figure 1 illustrates the fragility of two representa-
tive fully-supervised works, i.e., the DG-Net [83] and IS-
GAN [16], which get very high rank-1 accuracies above
94%, 95% respectively when tested on Market1501 dataset.
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Figure 1. Performance of two representative models. M: Train and
test on Market1501. M—G: Trained on Market1501 and tested on
GRID . MS—G: Trained on multi-source datasets and tested on
GRID.

However, the rank-1 accuracies drop to 18.7% and 27.8%
respectively when directly tested on the dataset of GRID,
which suggests the weak extrapolation capability and poor
robustness of fully-supervised methods. We further train
these two models over multiple source domains (the details
of sources are in Section 4.1). However, the even worse
performance are obtained, which indicate the challenge of
cross-domain RelD. To tackle these problems, a number of
DA methods have been proposed to mitigate the domain
gap without the need for extensive manual annotations for
new camera settings. However, as the deployment infor-
mation of new cameras is unknown, large amounts of un-
labeled data are required for DA retraining. These prob-
lems severely hinder real-world applications of current per-
son RelD systems.

To tackle the above challenges, we focus on a more
realistic and practical setting: generalizable person RelD,
where the model is trained on multiple large-scale pub-
lic datasets forming source domains and tested on un-
seen domains. The generalizable person RelD is origi-
nally formulated as a problem of domain generalization
(DG) [59], which is more practicable than the traditional
RelD paradigm since the ready-made models can work on
any new settings without repeating the whole process of



data collection, annotation, and model updating.

Existing methods mainly follow a meta-learning
pipeline [59] or utilize domain-specific heuristics [28, 62].
Different from them, we address the generalized person
RelD problem based on a disentangled representation learn-
ing framework, where the domain information of various
data sources is explicitly embedded and further used for
augmenting unseen data samples to improve the disentan-
glement.

Inspired by the observation that human beings can eas-
ily distinguish the same person identities with their appear-
ances, body shapes, or accessories from various visual con-
texts or imaging conditions such as backgrounds, viewing
angles, illuminations, efc. Based on this intuition, we first
present a causal view on the generalizable person RelD.
With this view, we use the structural causal model (SCM)
to provide insights for the poor generalization of traditional
ReID models when applied to unseen domains. The as-
sumption behind this is that person images are affected by
two sets of latent random variables, i.e. identity-specific fac-
tors, and domain-specific factors. Thus, a desirable gener-
alizable person ReID model should be able to identify these
two kinds of factors in a disentangled latent space, lead-
ing to invariant perceptions of person identity across various
data sources.

Based on the above analysis, firstly, a Multi-Domain
Dual Adversarial Network (MDDAN) is proposed to jointly
learn two encoders for embedding identity-specific and
domain-specific factors from multiple public RelD datasets,
where the adversarial learning principle is adopted to ex-
clude the domain (identity) related information from the
embedded identity (domain) specific representations. Then,
motivated by the great benefit of data augmentation to
DG [25, 77, 24], we further exploit the advantages of the
disentangled representations with a Causal Data Augmen-
tation (CDA) block. Here, a feature-level data augmenta-
tion is performed by mixing one identity-specific feature
with various domain-specific features, without the need for
image manipulation or manual data collection. The intu-
ition behind the CDA block can be explained as interven-
tions on the identity-specific and domain-specific factors
from a causal learning perspective. In this way, an identity-
preserving loss on the augmented data helps to obtain causal
invariances across various data domains. These two compo-
nents (MDDAN and CDA) are integrated as a whole system,
termed DIR-RelID.

To sum up, the contributions of our work can be summa-
rized as:

* For the first time, a causal perspective on the analysis
of generalizable person RelD is introduced, based on
which we claim that the essential problem of gener-
alizable person RelD is how to disentangle identity-
specific factors and domain-specific factors for im-

proving robustness to spurious correlations;

* A disentangled representation learning approach
named DIR-RelD is proposed, where a MDDAN block
is adopted to identify identity-specific and domain-
specific factors from multiple data sources. Then a
CDA block is adopted for data augmentation as causal
interventions. Mathematical analysis proves the char-
acteristics of our method;

» Comprehensive experiments are conducted to demon-
strate the effectiveness of the learned disentangled rep-
resentations. Our method achieves superior perfor-
mance in comparison with State-Of-The-Art (SOTA)
methods on large-scale generalizable person RelD
benchmarks.

2. Related Work

Single-domain Person RelD Existing works of single-
domain person RelD (i.e. supervised person RelD) usu-
ally depend on the assumption that in training and test-
ing data are independent and identically distributed (i.i.d.).
They usually design or learn discriminative features [72,

, 43] and develop efficient metrics [31, 35, 70]. With
the rapid development of deep Convolutional Neural Net-
works (CNNs), single-domain person ReID has achieved
great progress. Some of the CNN-based methods intro-
duce human parts [32, 61], poses [79], and masks [58] to
improve the robustness of extracted features. And some
other methods use deep metric learning to learn appropri-
ate similarity measurement [14, 11]. Despite the encour-
aging performance under the single-domain setup, current
fully-supervised models for person RelD degrade signifi-
cantly when deployed to an unseen domain.

Cross-domain Person ReID Unsupervised Domain
Adaptation (UDA) has achieved great progress [50] and
is commonly adopted for cross-domain person RelD to
achieve good performance on unlabeled target domain with
both the labeled source data and unlabeled target data. The
UDA-based ReID methods usually attempt to transfer the
knowledge from source domains to the target one depend-
ing on target-domain images [13, 41, 27], features [64]
or metrics [49]. Another group of UDA-based methods
[17, 18, 20, 75] propose to explore hard or soft pseudo la-
bels in unlabeled target domain using its data distribution
geometry. Though UDA-based methods improve the per-
formance of cross-domain RelD to a certain extent, most
of them require a large amount of unlabeled target data for
adaptation.

Generalizable Person ReID Recently, Generalizable
person RelD methods [59, 28, 29, 36, 67] are proposed to
learn a model that can generalize to unseen domains with-
out target data and the adaptation. Jia er al. [28] learn
the domain-invariant features by integrating the Instance



Normalization (IN) into the network to filter out style fac-
tors. Jin et al. [29] extend the work [28] by restituting
the identity-relevant information to network to ensure the
model discrimination. Lin et al. [36] propose a feature gen-
eralization mechanism by integrating the adversarial auto-
encoder and Maximum Mean Discrepancy (MMD) align-
ment. Song et al. [59] propose a Domain-Invariant Mapping
Network (DIMN) following the meta-learning pipeline and
maintaining a shared memory bank for training datasets.
Wang et al. [67] improve the generalizability of learned
model by synthesizing a large-scale person RelD dataset.
Different from the above methods, our work addresses the
DG person RelD via domain invariant representation learn-
ing..

Domain Generalization Domain/Out-of-distribution
generalization [24] aims to learn representations (X ) that
is invariant across environments £ so that model can well
extrapolate in unseen environments. The problem can be
formulated as ming max.ce E[l(y, ®(z)) | E = e]. Rep-
resentative approaches like IRM [2] and its variants [ 1] are
proposed to tackle this challenge. However, IRM entails
challenging bi-level optimization and would fail catastroph-
ically unless the test data are sufficiently similar to the train-
ing distribution [54]. Data augmentation is another effec-
tive strategy to address DG [77] but it heavily depends on
domain-specific expertise. To address those challenges, we
proposed DIR-RelD which can be seen as an effective way
for disentanglement and data augmentation.

Causality for CV Causal Representation Learning [57]
combines machine learning and causal inference, which has
attracted increasingly attention and become a potential di-
rection towards human-level intelligence. Simultaneously,
there is a growing number of computer vision tasks that
benefit from causality [3, 42, 44, 53, 51, 39]. Most of them
focus on causal effects: disentangling the desired model
effects [7], and modularizing reusable features that gener-
alize well [47]. Recently, causal intervention is also in-
troduced into computer vision [66, 71, 63]. Specifically,
CONTA [15] removes the confounding bias in image-level
classification by backdoor adjustment and thus provides
better pseudo-masks as ground-truth for the subsequent seg-
mentation model. IFSL [74] believes that pre-training is
a confounder hurting the few-shot learning performance.
Specifically, they propose a SCM in the process of FSL and
then develop three practical implementations based on the
backdoor adjustment. We also adopt the SCM of Pearl [48]
to model the causal effects of person RelD. However, our
implementation is not based on frontdoor/backdoor adjust-
ment and our target is not to infer the marginal distribution.
We use causality to provide the explanations why traditional
methods work poorly on unseen domains and further pro-
pose methods to tackle the problem.

3. Learning Disentangled and Invariant Rep-
resentations

In this section, we first introduce the proposed SCM
to illustrate the motivation to disentangle identity-specific
factors and domain-specific factors for improving the ro-
bustness of generalizable person ReID to domain varia-
tions [44, 8, 83]. Then, a DIR-ReID model is proposed
to learn the disentanglement of identity-specific factors and
domain-specific factors from multiple public ReID datasets.
Finally, a theoretical analysis is taken for a better under-
standing of our method.

3.1. SCM for Generalizable Person RelD

Inspired by current research of harnessing causality in
machine learning [3], we propose a SCM to analyze the dis-
entanglement and generalization in person ReID models.
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Figure 2. Graphical representation of person RelD methods. X:
pedestrian images, S, V: identity-specific and domain-specific
factors, Y, D: pedestrian and domain labels. Gray circles denote
observable variables.

Following the causal models in [8, 60], we use the SCM
(in Figure 2) to describe the causal relationships between
person images, data domains and person identities, where
X,Y and D denote the observable variables of pedestrian
images, identity labels and domain labels, S and V are
the latent variables indicating identity-specific and domain-
specific factors respectively. As shown in the model, there
are four kinds of causal relationships as follows:

S,V — X. One person image is determined by its identity-
specific factors, e.g., body shapes, clothes, and accessories,
as well as domain-specific factors, e.g., backgrounds, illu-
minations, and viewpoints.

S — Y. Identity-specific factors .S directly cause Y, which
means the person identities are only determined by their
identity-specific information, such as clothing styles, body
shapes, efc., instead of the backgrounds, illuminations and
camera viewpoints.

V' — D. Domain-specific factors are the direct causes of D,
namely images captured by a multi-camera network (sin-
gle domain) likely share similar illumination conditions, in-
door/outdoor backgrounds.

S — V. The undirected S — V edge indicates the spuri-
ous correlations between S and V' in the real world, which
expresses the indirect influences of V to Y (S to D).
For example, pedestrians mostly appear in campus in the
CUHKO3 while in a busy underground station in the GRID.
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Figure 3. Schematic description of the proposed approach.
Zo,Z1,r2: Three images from one mini-batch. fs, fy: en-
coders of identity-specific and domain-specific factors. s, v:
identity-specific and domain-specific factors represented in la-
tent space. Cs,Cy,Cc: classifiers for identity-specific factors,
domain-specific factors, and concatenated vectors. @: concate-
nation of two latent vectors.

So the pedestrian identities and their backgrounds are spu-
riously correlated.

Thanks to the causal structure, we can explain why V'
confounds the person ReID process: even if some pixels
in X (which belong to domain-specific factors) have noth-
ing to do with Y, the path V' — S — Y can still corre-
late V' and Y, which misleads the identity classifier to fo-
cus on these domain-specific factors. That is why the tra-
ditional supervised methods have poor generalization abil-
ity: when trained on a single domain, identity-specific fac-
tors and domain-specific factors are highly entangled in the
feature space, while the spurious correlations learn from a
single training domain do not hold in cross-domain tests.
Thus, it is desirable to reduce such spurious correlations to
improve the generalization capability of the learned repre-
sentations. However, it is almost impossible to get an ideal
dataset' covering all kinds of domain-specific factors. In
this paper, we will explore and exploit the potentials of ex-
isting large-scale public datasets to learn identity-domain
disentangled representations for generalizable person RelD.

3.2. The DIR-RelID Framework

Notations and Problem Formulation. For general-
ized person RelD, we have access to GG labeled datasets

D = {Dy}5_,. Each dataset Dy = {(x;, y;, d;)}¥s,, where

1=

N, is the number of images in D, and (x;,y;,d;) is the

! An ideal dataset has images of every pedestrian in all backgrounds and
illumination conditions, which is unbiased and has few spurious correla-
tions. In such a case, traditional deep neural network (DNN)-based meth-
ods will not consider these domain-specific factors as identity-related, and
thus the spurious correlations between S, V' is removed.

image, identity label and domain label for the image re-
spectively. In the training phase, we train a DG model
using N = Zf:l N, aggregated image-label pairs with
M = Ele M, identities from all source domains. In the
testing phase, we perform a retrieval task on unseen target
domains without additional model update.

As analyzed in Section 3.1, the essential is how to get
the disentanglement of .S and V' for a domain invariant rep-
resentation. Here, we propose the DIR-ReID to tackle the
challenging problem. DIR-ReID consists of three blocks,
as shown in Figure 3.

(i) Identity adversarial learning block, which is a
domain-agnostic, identity-aware encoder fg to obtain
identity-specific factors.

(i) Domain adversarial learning block, which is a
domain-aware, identity-agnostic encoder fy to identify
domain-specific factors.

(iii) Causal data augmentation block, which adopts data
augmentation from a causal view in SCM for learning in-
variant representations.

Components (i) and (ii) are named MDDAN. As shown
in figure 3, the overall process includes feeding images
Zg, 21, x2 randomly selected from N source domain. into
identity-specific and domain-specific encoders to get disen-
tangled representations sg, 1, S and vg, v1,v2 via adver-
sarial learning. Then causal data augmentation is performed
based on these representations to train the encoders fs and
fv for learning invariant representations.

Identity Adversarial Learning Block. An identity-
aware encoder fg is adopted to extract identity-specific fac-
tors. Then, a classifier C, is used to identify the ID label
for a given person image x;. The cross-entropy loss with
label smoothing [45] is calculated for training the encoder
fs, which is defined as:

N
Lig=— ZIOgP(Y = yilCs (fs (1)) (1)
i=1

where 6 is the parameters of fg, Cg is the identity classi-
fier. y; is the labeled person identity of x;.

To exclude all the domain information from identity-
specific factors, a domain classifier Cy is adopted for ad-
versarial learning. One promising way is using gradient
reversal layer (GRL) technique in DANN [19] to train the
encoder fg and classifier C,, simultaneously, where a mis-
classification loss is adopted to enforce an image not to be
classified into its true domain class. However, “misclassi-
fication” does not mean “indistinguishability”. Intuitively,
“indistinguishability” means classifying one image into all
the domains equiprobably. Hence, we adopt a loss of maxi-
mum entropy (minimization of negative entropy [8]) termed
the domain-indistinguishability loss as follows:

fis = —H(D]S)), 2)



where H is the entropy to measure the uncertainty of pre-
dicted domain class given identity-specific factors, i.e.,

H(DIS)) ZZP = g|Cv (fs (1)) 3)

i=1 g=1
“log P(D = g|Cv (fs (2:)))

It encourages the identity-specific factors of all images to
contain less domain information about their datasets.

As a result, the parameters 0 of the identity-aware en-
coder fg are optimized by jointly minimizing the identity-
classification loss and the domain-indistinguishability loss.
The overall objective function of identity adversarial learn-
ing is:

mln L2+ M\ Lom 4)

indis®

Domain Adversarial Learning Block. This block
aims to extract the domain-specific factors from person
images x; and exclude identity-specific factors. As it is
a dual task to the identity adversarial learning, we can
use a similar training schema to learn the parameters of
fv. Here, the identity-classification loss and the domain-
indistinguishability loss in the above section are replaced
by the domain-classification loss L . and the identity-
indistinguishability loss £ ;. respectively. The objective
of the domain adversarial learning block is as follows:

mln [’dom + >‘2£2ndzs (5)

The domain-classification loss £Y

Gom 1s defined as,

N
Zom = Zlog P(D = dl‘CV(fV(xz)))7 (6)

i=1

where d; is the domain label of image x;. The identity-
indistinguishability loss £i . is similar to Equation 3
but has different number of classes (number of classes for
£id . is M and G for £Lom ).

Causal Data Augmentation Block. With the disentan-
gled representations learnt from MDDAN, we can bring
identity-specific information of x; to various contexts and
backgrounds, which can be seen as identity-preserving data
augmentation. For each sample x;, four different strategies
are used to select K domain-specific factors for data aug-

mentation.

e K-Random. For each z;, we randomly select K dif-
ferent domain-specific factors {v;}/<, where j # i.

» K-Hardest. For each x;, we select K domain-specific
factors {v;}1<, which are the most dissimilar to v;.

e K-Mixup. For each x;, we can create more domain-
specific factors by mixup [76, 73]. We generate K

mixed sample feature v by interpolation of two ran-
domly selected features (a pair (v;,v7)), denoted by

o= awj + (1 — )], @)
where « € [0, 1] controls the interpolation degree and
we empirically set « = 0.5 in our experiments.

e K-MixHard. For each x;, we firstly select K domain-
specific factors {v;}X least like v; and generate K
mixed features by randomly interpolating these fac-
tors.

Then we perform feature-level augmentation by concate-
nating the K domain-specfic factors {v;}/<, with s; and
obtained K new feature factors {s; v; }JKzl Recall the as-
sumption of disentanglement that v; shouldn’t related to the
pedestrian identity. Hence we use a classifier C2 on these
new feature vectors and expect that the classification results
should be identity-preserving, which can be explained for
learning causal invariance from various interventions on the
domain-specific factors. Thus, the identity invariance loss
is calculated based on the cross entropy loss as follows.

N K
‘szriwar = Z Z IOgP = yz‘cg(sz S2) Uk))) (8)

=1 k=1

Conversely, we can also perform a domain-preserving data
augmentation, where K identity-specific factors are se-
lected to be concatenated with a given domain-specific fac-
tor v; and enforcing the domain classification result is not
affected by identity-specific factors. And the domain invari-
ance loss is defined as:

N K

ciom = =33 "log P(D = di|C (v; @ s1,)),  (9)

i=1 k=1

where CY is the domain classifier on the new augmented
features.

3.3. Model Summary

Recalling the adversarial learning of identity-aware en-
coder fs and domain-aware encoder fy (Eq. (1) and
Eq. (6)), the identity and domain classifiers need to be
trained with the inputs of domain-specific and identity-
specific factors. The classification losses are calculated in
terms of the cross entropy function.

N
o= ZlogP (Y
i=1

= yilCs (fv (7:)))- (10)

N
Ly == logP(D =d;[Cv(fs(z:))).  (11)

i=1



Finally, given the parameters ¢g, ¢y of classifiers Cg, Cy,
the total loss function is summarized as follows.

min ‘Cfd + ‘C’Zom + ‘Cgom + ‘C;}d (12)
5,9V

And the overall loss functions for the other components are
defined as

min ‘Cfd + )\15%33}5 + >‘3£§Zvar7
05,9,

. " id dom (13)
min Ly, + A2Lin s + AL]

Gv’d)g mvar?
where gbg, gb‘é are parameters of classifiers Cg and Cg re-
spectively. With the above components, each mini-batch
training process is divided into two phases. In the Phase
I, the encoders fs and fy as well as the augmented data
classifiers CZ and CY are trained by Eq. (13), while the
identity and domain classifiers are fixed. Then in the Phase
II, identity and domain classifiers are trained by Eq. (12),
while other components are fixed.

3.4. Analysis

Lemma 3.1 Ler D; denote one of the source domains, s™
are identity-specific factors of images from the T-th domain.
Let p(s™|D;) be the class-conditional density function of the
T-th domain given domain information D;. It can be proved
that, carrying out the MDDAN will lead to

p(sTID;) = pr(sT),Vs™ € Dpyi=1,.., K. (14)

It indicates that in the latent space of identity-specific rep-
resentation, any image will be invariant to K different do-
mains. Its class-conditional density function value for these
domains (e.g., p(s7|D;)) is just equal to its prior density
Sfunction value in its own domain (e.g., p-(s™)), but not de-
pendents on the domain index i. The proof is shown in the
Section A of the supplementary material.

Lemma 3.2 From the view of information theory, MDDAN
is minimizing the mutual information between identity-
specific factors S and domain information D, namely
minZ(S, D). The proof is in the Section B of the supple-
mentary material.

4. Experiments
4.1. Datasets and Settings

Following [59, 28], we evaluate the DIR-ReID with mul-
tiple sources (MS), where source domains cover five large-
scale RelD datasets, including CUHKO02 [33], CUHKO03
[34], Market1501 [82], DukeMTMC-RelID [84], CUHK-
SYSU PersonSearch [69]. Details of MS are summarized
in Table 1. The unseen test domains are VIPeR [22],
PRID [26], QMUL GRID [38] and i-LIDS [68]. We follow

Collection Dataset IDs  Images
CUHKO02 1,816 7,264

CUHKO3 1,467 14,097

MS DukeMTMC-Re-Id 1,812 36,411
Market-1501 1,501 29,419

CUHK-SYSU 11,934 34,547

Table 1. Training Datasets Statistics. All the images in these
datasets, regardless of their original train/test splits, are used for
model training.

Dataset Probe Gallery '
Pr. IDs | Pr. Imgs | Ga. IDs | Ga. imgs
PRID 100 100 649 649
GRID 125 125 1025 1,025
VIPeR 316 316 316 316
i-LIDS 60 60 60 60

Table 2. Testing Datasets statistics.

the single-shot setting, where the number of probe/gallery
images are summarized in Table 2. The evaluation proto-
cols can be found in Section C of the supplementary mate-
rial. The average rank-k (R-k) accuracy and mean Average
Precision (mAP) over 10 random splits are reported based
on the evaluation protocol. In this way, we simulate the
real-world setting that a ReID model is trained with all the
public datasets to evaluate the generalization capability to
unseen domains.

4.2. Implementation Details

Following previous generalizable person ReID methods,
we use MobileNetV2 [56] as the domain-specific encoder
fv and use MobileNetV2 with IN layer [37] as identity-
specific encoder fs. Our classifiers Cs, Cy, C2, C% are sim-
ply composed of a single fully-connected layer. Images are
resized to 256 x 128 and the training batch size is set to
128. Random cropping, random flipping, and color jitter
are applied as data augmentations. The label smoothing pa-
rameter is 0.1. SGD is used to train all the components
from scratch with a learning rate 0.02 and momentum 0.9.
The training process includes 150 epochs and the learning
rate is divided by 10 after 100 epochs. At test time, DIR-
RelD only involves identity-specific encoder fg, which is
of a comparable network size to most ReID methods. The
tradeoff weights are setto A\o = 0.1and \y = A3 =My =1
empirically.

4.3. Comparisons Against State-of-the-art

Comparison with Single Domain Methods. Many su-
pervised methods report high performance on large-scale
benchmarks, but their performance is still poor on small-
scale ones. We select 6 representative models (labeled as ‘S’
in Table 3) trained with data and labels the same as the train-
ing splits of target datasets. Although data from the target



VIPeR (V) PRID (P) GRID (G) i-LIDS (I)
Methods Type | Source - o - ~RIs™ R0 mAP [ R RS RI0C mAP | R RS R0 mAP| RT T R5 R0 AP
DeepRank [10] S Target | 384 69.2 813 - - - - - - - - - - - - -
DNS [78] S | Target | 423 715 829 298 529 660 - - -
MTDnet [12] S Target | 47.5 73.1 82.6 320 51.0 620 - - - 584 804 873
JLML [78] S Target | 50.2 742 843 - - - 375 614 694 - - -
SSM [4] S Target | 53.7 - 91.5 - - - 272 - 61.2 - - -
SpindleNet [&1] S Target | 58.3 741 832 67.0 89.0 89.0 - - 663 86.6 91.8
MMFA [37] DA M 385 - : 268 - E : E E
MMFA [37] DA D 36.3 - 34.5
TJ-AIDL [65] | DA M 38.5 26.8
TJ-AIDL [65] DA D 35.1 34.8 -
UDML [49] DA Comb | 31.5 242 49.3
SyRI [5] DA C3+D | 43.0 - - 43.0 - - - - - 56.5 - -
AugMining [62] DG MS 49.8 708 77.0 - 343 562 657 - 46.6 675 76.1 - 763 93.0 953 -
DIMN [59] DG MS 512 702  76.0 60.1 392 67.0 76.7 52.0 293 533 658 41.1 702 89.7 945 78.4
DualNorm [28] | DG MS | 539 625 753 580 | 604 736 848 649 | 414 474 647 457 | 748 820 915 785
DDAN [Y] DG MS 565 656 763 60.8 629 742 853 67.5 462 554 68.0 50.9 780 857 932 81.2
DIR-RelD DG MS 583 669 773 62.9 711 824 88.6 75.6 478 51.1 705 52.1 744 831 90.2 78.6
Table 3. Comparisons against state-of-the-art methods. ’S’: single domain, ’DA’: domain adaptation (cross-domain), 'DG’: domain

generalization, "M’: Market1501, *D’: DukeMTMC-RelD, comb’: the combination of VIPeR, PRID, CUHKOI, i-LIDS, and CAVIAR
datasets. *C3’: CUHKO3, *-": no report. 1°¢ and 2°¢ highest accuracy are indicated by blue and red color.

domain are inaccessible for DIR-RelD, it achieves compet-
itive or better performance on all four benchmarks, which
indicates that sufficient source data and our model based on
domain invariance learning can alleviate the need for data
from the target domain.

Comparison with Domain Adaptation Methods. We
also select representative unsupervised domain adaptation
methods (labels DA in Table 3) for the comparison. These
DA methods are trained with data from the source domain
and then adapted to the target domain using unlabeled im-
ages from their training splits. Since our model does not
perform retraining with unlabeled data, it is more challeng-
ing to compare with these DA methods. However, the pro-
posed method still outperforms all of these DA methods by
a large margin.

As discussed earlier, supervised methods require labeled
target datasets and unsupervised domain adaptation meth-
ods require unlabeled images from the target domain, which
both need additional training data collections. The expen-
sive manual cost of data collections hinders the ReID mod-
els from real-world deployments. DIR-RelD attains supe-
rior performance without using any images or labels from
the target domain and additional adaptation, which is cru-
cial for practical ReID deployment.

Comparison with DG Methods. Finally, we compare
DIR-ReID with existing methods about generalizable per-
son RelD. As far as we know, there are a few publications
focusing on person RelD generalization problem, including
DIMN [59], DualNorm [28], [62] and DDAN [9]. From
the third row in Table 3, the DIR-RelD has achieved the
best performance in terms of mAP against other SOTA DG-
RelID methods. Although our method falls slightly behind
others on the i-LIDS and the GRID datasets in terms of
Rank-5 and Rank-10, the DIR-ReID obtains the best Rank-
1 performance on three of four datasets. Following [55],
we consider the worst-domain accuracy (WDA), which is

R-1 | R-3 | R-5 | R-10

Baseline (DualNorm [28]) | 34.4 | 40.9 | 46.3 | 54.7
w/ Dual DANN [19] 3541420 | 46.8 | 544
Improvements? 1.0 | 1.1 | 0.5 | -0.3

w/ MDDAN 36.6 | 45.8 | 51.6 | 56.2
Improvements? 22 149 | 53 | 15

w/ CDA 40.2 | 53.2 | 57.2 | 63.3
Improvements?t 5.8 | 123|109 | 8.6

Table 4. Ablation studies on three different blocks: dual GRL

block, our MDDAN block and the CDA block. The reported met-
ric are the rank-1, rank-5, rank-10 accuracies of the GRID dataset.
Models here are all trained on three datasets i.e. Market-1501,
CUHKO2 and CUHKO3. The improvements are the difference
from the baseline.

32.3% rank 1 accuracy for AugMining, 29.3% rank 1 accu-
racy for DIMN, 41.4% rank 1 accuracy for DualNorm and
46.2% rank 1 accuracy for DDAN. Compared to them, the
DIR-RelD has a superior WDA value, which is 47.8% rank
1 accuracy when tested on the GRID dataset.

Overall, the DIR-ReID has achieved competitive perfor-
mance in the challenging setting of generalizable person
RelD, which verify that the identity-specific factors can be
disentangled effectively by the proposed dual adversarial
learning and casual data augmentation.

4.4. Ablation Studies

There are two main components in the proposed DIR-
RelD: the MDDAN block and the CDA block. Here, we
firstly analyze the effectiveness of the blocks respectively,
then demonstrate their contributions to the final perfor-
mance of the whole DIR-RelD model.

Analysis of MDDAN. The superiority of MDDAN is
verified by comparison with the dual DANN [19] block.
The latter means inserting the GRL layers between fg, Cy



and fy,Cg. Simultaneously, the dual GRL block replaces
the maximum entropy loss in MDDAN with the maximum
misclassification loss. Results are shown in Table 8. The
dual DANN method only has a slight improvement in com-
parison with the baseline, while our MDDAN block leads
to significant improvements.

K-Random K-Hardest K-Mixup K-MixHard
42
40.16
40 * 38.72
38 37.7 *
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g k.
=1
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Figure 4. Ablation study on CDA block. The metric is the rank-1
accuracy on the GRID dataset. Considering the expensive cost of
training with five datasets, all the models here are trained on three
datasets, i.e. Market-1501, CUHKO02 and CUHKO3.

Analysis of Methods for Causal Data augmentation.
We compare four different implementations of CDA and
the results are shown in Figure 6. K-Random is the sim-
plest method while it works well, attaining 38.72% rank
1 accuracy when K = 10. Surprisingly, K-Hardest is
no better than K-Random. It may because that these se-
lected hardest vectors may hinder the convergence speed
of our optimization process. K-Mixup outperforms other
methods and attains 40.17% rank 1 accuracy, which veri-
fied the importance of mixup for data augmentation. How-
ever, as we increase the value of K, the performance
will not be improved. When we combine K-Hardest and
mixup, K-MixHard has a slightly higher performance than
K -Hardest, while it still has a large margin compared to
K —MixUp.

Ablation Study of Different Blocks. To evaluate the
contribution of each component, we gradually add the MD-
DAN and the CDA to the baseline, and the overall abla-
tion studies are reported in Table 8. The MDDAN improves
the rank-1 accuracy from 34.4% to 36.6%. The results in
rank-3, rank-5, rank-10 are consistently improved, which
validate that the MDDAN removes some of the domain-
specific information from our identity-specific representa-
tions and yields consistent generalization performance im-
provements. The CDA provides greater improvement gains
(5.8% higher rank-1 accuracy and more than 8% point
higher in other metrics). It validates that CDA can exclude
domain-specific information efficiently. Results of ablation
studies on other test datasets are reported in Table 5, which

PRID | VIPeR | i-LIDS
Baseline (DualNorm [28]) | 38.9 54.0 64.3
w/ Dual DANN [19] 41.0 53.3 66.2

Improvements? 2.1 -0.7 1.9
w/ MDDAN 42.7 | 56.5 65.7
Improvements? 3.8 2.5 1.4
w/ CDA 438 | 614 64.2
Improvements?t 4.9 7.4 -0.1

Table 5. Ablation studies on three different blocks: dual GRL
block, our MDDAN block and the CDA block. The metric is the
rank-1 accuracy. Models here are all trained on three datasets, in-
cluding Market-1501, CUHKO02 and CUHKO3. The improvements
denote the difference from the baseline.

also verifies the efficiency of the DIR-ReID. Unfortunately,
the DIR-ReID seems not to work well on i-LIDS dataset,
we will explore the reason and make improvements in fu-
ture work.

We also conduct additional ablation studies and disen-
tanglement experiments on rotated MNIST. The dataset and
results in Section D of the supplementary material.

5. Conclusions and Future Work

We propose a novel generalizable person RelD frame-
work based on disentanglement and augmentation from a
causal invariant learning perspective. Specifically, a MD-
DAN block is proposed to disentangle identity-specific
and domain-specific factors from multi-source RelD train-
ing data. We then propose CDA block to learn invariant
identity-specific features. The comprehensive experimental
results show that DIR-RelD achieves state-of-the-art perfor-
mance. We believe DIR-ReID may shed light on the devel-
opment of new paradigms for DG beyond the person RelD.

To upgrade DIR-RelD, we can improve the model per-
formance with other tricks i.e. triplet loss [40], Maxi-
mum Mean Discrepancy (MMD) [23] regularization. One
promising way is to generate realistic images from concate-
nated vectors. The augmented feature vectors are guided by
a reconstruction loss, which will further improve the disen-
tanglement of identity-specific and domain-specific factors.
These generated images can also be used for interpretability
and augmenting the training set. Besides, we will seek other
methods for better disentanglement performance such as re-
placing the multi-domain adversarial learning with mutual
information minimization [6] or f-divergence [46] maxi-
mization. We believe that the methodology developed in
this paper can shed light on the study of new paradigms for
domain generalization beyond the person RelD.
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A. Theoretical analysis of the Multi-Domain
Disentangled Adversarial Neural Network
(MDDAN)

Here we adapt from [52] and prove the Lemma 1 in the
original manuscript. All the analyses are conducted in the
shared ID-specific representation space. We first prove the
following lemma.

Lemma A.1 When MDDAN is carried out and the uncer-
tainty is maximized, given any ID-specific representation
s™ of an image from domain D, the conditional proba-
bility of any D; given s™ will equal 1/K, namely for any
i=1,..,K, we have p(D;|s") = 1/K.

Proof A.1 Here we slightly abuse the notation: omitting
the domain classifier Cy and p(k|sT) is equivalent to
p(Dy|s™). MDDAN is defined as follows.

K
max — Y p(k|s")log p(kls7),
k=1
K 15)
s.t. Zp(k|s7) = 1;p(k|s") > 0, Vk.
k=1

Let H(pr) = pr logpy, where p, = p(k|s™). We sim-
plify the above optimization problem as

K K
minZH(pk), s.t. Zpk = 1;p, > 0,VE, (16)
k=1 k=1

_ 1
T prln2

The sum of convex functions Zle H(pr) is also a con-
vex function. Namely, this problem is a convex optimization
problem. To prove the lemma, it is now equivalent to show
that the minimum value of this convex optimization problem
is obtained when py = ps = ... = pg = 1/K.

We use the Lagrange multiplier method to solve the prob-
lem. The Lagrange function is

where H(py,) is convex as we have T" (py,) > 0.

K K
L(p,A) = prlogpr + D px — 1)) (17
k=1 k=1

We take partial derivatives for each py, and get

OL(p, \)

Opr,

Then we have p, = 2=*~1/ 12, Ag Zszl pr = 1, we have
K %2727V In2 — 1 and thus p, = 1/K,i = 1,2,..., K.
Since the local minimum of the convex function is the global
minimum, when py = ps = ... = pg = 1/K, Zle H(pk)
achieves the minimum value, log % In other words, when
MDDAN is carried out and achieves the maximum uncer-
tainty, foralli =1, ..., K, we have p(D;|s™) = 1/ K.

1
—+A=0.

In2 (18)

= log px, +



Now we are ready to prove Lemma 1. we can calculate any
domain D;’s conditional probability given s, which is

p(s™|D;)p(Dy)

P(DisT) ==

V8" €Dri=1,.. K,

19)
where p(s7|D;) denotes the conditional probability of s”
given domain information D;, p,(s™) denotes the proba-
bility function of the ID-specific representation in its do-
main D,, and p(D;) is the priori probability of domain
classes. Without generality, we set equal priori probabil-
ity for each domain, namely p(D;) = 1/K. Further, from
the Lemma A we know that, optimizing MDDAN leads to
p(D;ls™) = 1/K forall i = 1, ..., K. Hence, Eq.(19) be-
comes

_ p(s™|D;)1/ K
1/K = 7])7(87)

=p(s"|D;) = p(s7),Vs" € Dryi=1,..., K,

Vs eDi=1,.. K,

(20)

thus completes the proof.

B. Understanding MDDAN by information
theory
Minimizing the mutual information between the ID-

specific factors S and the domain information D is defined
as

minZ(S, D) = min H(D) — H(D|S)

= min —H(D|S)
= max H(D|S)

ey

The second line is derived since the entropy of do-
main distribution (D) is not related to our optimization.
Namely, our MDDAN is essentially minimizing the mutual
information between the ID-specific factors and the domain
information.

C. Evaluation Protocols.

Evaluation protocols are as follows.

GRID [38] contains 250 probe images and 250 true
match images of the probes in the gallery. Besides, there
are a total of 775 additional images that do not belong to
any of the probes. We randomly take out 125 probe images.
The remaining 125 probe images and 775 + 250 images in
the gallery are used for testing.

i-LIDS [68] has two versions, images and sequences.
The former is used in our experiments. It involves 300 dif-
ferent pedestrian pairs observed across two disjoint camera
views 1 and 2 in public open space. We randomly select 60
pedestrian pairs, two images per pair are randomly selected
as probe image and gallery image respectively.

13

block details
1 Conv2d(32, 5), BatchNorm2d, ReLLU
2 MaxPool2d(2, 2)
3 Conv2d(64, 5), BatchNorm2d, ReLU
4 MaxPool2d(2, 2)
5 Linear(2)

Table 6. Architecture for encoders fgs, fiy. The parameters for
Conv2d are output channels and kernel size. Theparameters for
MaxPool2d are kernel size and stride. The parameter for Linear is
output features.

PRID2011 [26] has single-shot and multi-shot versions.
We use the former in our experiments. The single-shot ver-
sion has two camera views A and B, which capture 385 and
749 pedestrians respectively. Only 200 pedestrians appear
in both views. During the evaluation, 100 randomly identi-
ties presented in both views are selected, the remaining 100
identities in view A constitute probe set and the remaining
649 identities in view B constitute gallery set.

VIPeR [22] contains 632 pedestrian image pairs. Each
pair contains two images of the same individual seen from
different cameras 1 and 2. Each image pair was taken from
an arbitrary viewpoint under varying illumination condi-
tions. To compare to other methods, we randomly select
half of these identities from camera 1 as probe images and
their matched images in 2 as gallery images.

D. Ablation studies on Rotated MNIST.
D.1. Dataset and Setting

To verify whether the capability of DIR-ReID model to
disentangling s and v, we first construct rotated MNIST
datasets following [21]. 100 images per class (10 classes
totally) are randomly sampled from the MNIST training
dataset, which is denoted by M .. We then rotated the im-
ages in Moo by 15,30,45, and 60 degrees, creating four
additional domains. To plot the latent subspaces directly
without applying dimensionality reduction, we restrict the
size of each latent space to 2 dimensions. In experiments,
we train a simplified version of the MDDAN with an addi-
tional reconstruction loss, which is enough to attain a en-
couraging result.

D.2. Architecture and Implementation Details

The architectures of the encoders, classifiers are dis-
played in Table 6, Table 7 respectively. All methods re
trained for 500 epochs and the batch size is set to be 100.
Adam is used to train all the components from scratch with
learning rate as 0.001. We also use warmup to linearly in-
crease the learning rate from 0 to 0.001 during the first 100
epochs of training.
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Figure 5. 2D embeddings of all two latent subspaces. (a,b): v encoded by fv . (c,d): s encoded by fs. (a,c) are colored according to their

domains and (b,d) are colored according to their classes.

block details
For Cy | ReLU,Linear(5 )
For Cs | ReLU,Linear(10)
For C2 | ReLU,Linear(5)
For C¢ | ReLU,Linear(5 )

Table 7. Architecture of classifiers for ID-specific factors,
Domain-Specific factors, and concatenated vectors. The param-
eter for Linear is output features.

Test Accuracy on Mrso
Baseline 46.4
w/ Dual DANN [19] 53.5
Improvements? 7.1
w/ MDDAN 58.2
Improvements? 11.8
w/ CDA 61.9
Improvements?t 15.5

Table 8. Ablation study of three different blocks: dual GRL block,
our MDDAN block and the CDA block. The reported validation
metric is the accuracy of the M50 dataset. The baseline is only
using the encoder fs and classifier Cg.

D.3. Additional Experimental Results

Analysis of MDDAN. As shown in Table 8, directly ap-
plying the dual GRL block benefits the generalization abil-
ity, while the proposed MDDAN improve the test accuracy
on M50 dataset by a even more large margin, which is
11.8% points.

Analysis of Methods for Causal Data Augmentation.
The comparison results are shown in Figure 6. Different
from CDA for Re-ID, here K-MixHard attains the most su-
perior performance, which is 61.9% test accuracy. In gen-
eral, K —Random can attain an encouraging performance
gain and we can choose other kinds of methods and param-
eters based on the difficulty of the dataset.

Ablation Study of Different Blocks. By adding the
multi-domain disentangled block and the causal data aug-
mentation block successively, we improve the generaliza-
tion accuracy from 46.4% to 58.2% and 61.9% respectively
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Figure 6. Ablation study of causal data augmentation methods.
The reported validation metric is the test accuracy of the Moo
dataset.

(Table 8), showing the effectiveness of the proposed model
again.

Disentanglement on Rotated MNIST. To bring the
ability of causal reasoning into DDARe-ID, the most im-
portant thing is to distinguish the ID-specific factors. The
disentanglement results are demonstrated in Figure 5. We
can find a correlation between the rotation angle (domain
labels) and v in Figure 5(a), five domains are clustered into
five distinct clusters, while in Figure 5(b) no clustering is
visible, namely there is very weak correlation between v
and class labels. By contrast, in Figure 5(c) no clustering
is visible according to the rotation angle. But Figure 5(d)
shows ten distinct clusters, where each cluster corresponds
to a class. From these initial qualitative results, we conclude
that the dual MDDAN is disentangling the information con-
tained in x as intended. v only contains domain information
and s only contains identity information. The great disen-
tangle results ensure the causal data augmentation can be
carried out effectively.



