
ContextPilot: Code Context Engineering with
Memory-Augmented Exploration Agents

Shuzheng Gao
The Chinese University of Hong Kong

Hong Kong, China
szgao23@cse.cuhk.edu.hk

Chaozheng Wang
The Chinese University of Hong Kong

Hong Kong, China
czwang23@cse.cuhk.edu.hk

Shuqing Li
The Chinese University of Hong Kong

Hong Kong, China
sqli21@cse.cuhk.edu.hk

Yun Peng
The Chinese University of Hong Kong

Hong Kong, China
ypeng@cse.cuhk.edu.hk

Michael R. Lyu
The Chinese University of Hong Kong

Hong Kong, China
lyu@cse.cuhk.edu.hk

ABSTRACT
Large language models (LLMs) have been widely adopted to address
real-world repository-level software engineering tasks. However,
such tasks pose significant challenges for LLMs due to the need
to reason over vast contexts spanning multiple files and modules.
Code context engineering, the process of identifying relevant code
context, plays a pivotal role, yet existing approaches face substantial
limitations. Retrieval-based methods rely on static strategies that
often fail to capture enough information. Agent-based methods,
while effective, typically depend on large models for end-to-end
task solving, incurring considerable computational costs. More-
over, the extensive interactions in agent-based methods lead to
lengthy input sequences, which not only increase computational
overhead but also impair model’s ability to leverage prior informa-
tion. To address the limitations, we propose ContextPilot, a novel
framework that effectively and efficiently discovers code context
for complex repository-level software engineering tasks. ContextPi-
lot comprises three key components. First, it employs a decoupled
explorer-generator agent structure where a lightweight explorer
model efficiently navigating repositories and a large proficiency
model then generates the final answer using the collected context.
Second, a tool-based memory mechanism periodically converts
exploration history into concise textual summaries, ensuring the
model’s input context remains within a manageable length. Third,
we introduce a reinforcement learning-based training method aug-
mented with cold start distillation to optimize the explorer’s capabil-
ities in context exploration and memory management. We conduct
preliminary experiments on repository-level code generation and
question answering benchmarks, DevEval and LongCodeBench.
The results demonstrate that ContextPilot achieves competitive or
even superior performance compared to large model-based agent
methods while substantially reducing computational costs.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
LLM4Code ’26, April 12, 2026, Rio de Janeiro, Brazil
© 2026 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Reference Format:
Shuzheng Gao, ChaozhengWang, Shuqing Li, Yun Peng, and Michael R. Lyu.
2026. ContextPilot: Code Context Engineering with Memory-Augmented
Exploration Agents. In The Third International Workshop on Large Language
Models for Code (LLM4Code ’26), April 12, 2026, Rio de Janeiro, Brazil. ACM,
New York, NY, USA, 5 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Repository-level code tasks, such as code generation [7], question
answering over large codebases [10], and automated issue reso-
lution [14], are critical to modern software development. Recent
research on large language models (LLMs) for software engineering
has progressively evolved from simple function-level tasks to more
realistic repository-level scenarios that reflect real-world engineer-
ing workflows. However, effectively handling repository-level tasks
requires models to reason over vast contexts spanning multiple files,
modules, and dependencies, which is a critical challenge that relies
on effective code context engineering [4, 11, 12].

Code context engineering, the process of identifying relevant
code context from large repositories, has emerged as a critical
challenge. It requires systematically and dynamically identifying
relevant contextual information tailored to different tasks. Early
approaches primarily employ retrieval-based methods to locate
relevant code context. For example, RepoCoder [15] uses itera-
tive similarity-based retrieval to augment prompts. while Repo-
former [13] trains models for selective context identification. De-
spite these advancements, retrieval-based methods demonstrate
limited performance, as they rely on static strategies that often fail
to capture sufficient necessary context [4]. Moreover, these meth-
ods typically require task-specific design and struggle to generalize
across different scenarios.

Agent-based approaches have demonstrated superior capabili-
ties through iterative repository interactions. For example, SWE-
agent [14] employs agent-computer interfaces for automated is-
sue resolution, while CodeAgent [16] integrates specialized tools
for multi-step reasoning. These methods enable LLMs to navigate
across different files using various tools, yielding more compre-
hensive code context. However, such agent-based methods rely
heavily on large models for end-to-end task solving due to their
complex tool invocations and solution generation requirements,
which incurs substantial computational costs. Furthermore, exten-
sive interactions result in accumulated lengthy input sequences,

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

LLM4Code ’26, April 12, 2026, Rio de Janeiro, Brazil Shuzheng Gao, Chaozheng Wang, Shuqing Li, Yun Peng, and Michael R. Lyu

which not only increases computational overhead but also impairs
the model’s ability to effectively leverage prior information.

To address these limitations, we propose ContextPilot, a novel
framework for code context engineering that effectively and effi-
ciently discovers relevant repository context. Our framework com-
prises three key components. First, we design a decoupled architec-
ture consisting of two models: a small explorer model that serves
as a context discovery agent to navigate codebases and identify
task-relevant code, and a large proficiency model that generates
the final solution using the collected context. Second, we intro-
duce a tool-based memory mechanism that periodically converts
exploration history into concise textual summaries, ensuring the
input context does not continuously grow and remains within a
manageable length. Third, we develop a training methodology that
combines cold-start training using trajectories distilled from large
models with reinforcement learning to further optimize the explorer
model’s capabilities in context discovery and memory management.
To evaluate the performance of ContextPilot, we conduct experi-
ments on repository-level code generation and question answering
tasks. We evaluate on DevEval [7] and LongCodeBench [10] bench-
marks. Compared with RAG-based method, ContextPilot achieves
substantial improvements of 28.1% and 3.4% with respect to pass@1.
Besides, compared with agentic methods, ContextPilot achieves
comparable and even better results with large models-based end-to-
end agent method and reduce the overall cost by 94.8% and 79.7%
on DevEval and LongCodeBench-QA, respectively.

In summary, our contributions are as follows:

• This work is a pioneering study exploring automated con-
text engineering for repository-level code tasks.We inves-
tigate approaches to automatically discover and leverage contex-
tual information in such software engineering tasks.

• We propose ContextPilot, a novel framework with three
key components for effective and efficient code context
engineering.Our approach consists of: (1) a decoupled explorer-
generator architecture, (2) a tool-based memory mechanism, and
(3) a reinforcement learning-based model training method.

• Preliminary experiments demonstrate improvements in
both effectiveness and efficiency across multiple bench-
marks.Our method achieves competitive and even better perfor-
mance on code generation and question answering tasks, while
reducing costs by 94.8% and 79.7% compared to agentic method
using large models.

2 RELATEDWORK
2.1 LLMs for Software Engineering
Recent advancements in LLMs have transformed software engineer-
ing, with advanced models demonstrating remarkable capabilities
across various programming tasks. ChatGPT [3] and GPT-4 [9]
have shown strong performance in code generation and debugging
through conversational interfaces. Claude series [2] models excel in
understanding complex programs. With the development of LLMs,
recent research has shifted to repository-level tasks mirroring real-
world SE workflows. For example, SWE-bench [6] evaluates models
on 2,294 real GitHub issues and pull requests, testing their ability
to resolve authentic software engineering problems. DevEval [7]

assesses cross-file code generation across Python and Java reposi-
tories. These benchmarks reveal that while LLMs excel at isolated
tasks, repository-level scenarios pose challenges for context han-
dling to manage inter-file dependencies and large codebases.

2.2 Context Engineering in SE tasks
Context engineering, the process of identifying and organizing rel-
evant code context from large repositories, is crucial for repository-
level SE tasks. Early retrieval-based methods focus on augmenting
LLM prompts with relevant snippets. RepoCoder [15] uses itera-
tive similarity-based retrieval for code completion. GraphCoder [8]
leverages graph-based knowledge to combine repository-specific
and general information. However, these static methods often fail
to capture enough context information due to the complexity of
code repository. Agent-based approaches provide dynamic alter-
natives through iterative repository interaction. SWE-agent [14]
enables autonomous exploration in GitHub repositories via agent-
computer interfaces. Though effective, agent-based methods face
the performance-efficiency trade-offs: smaller agents lack reason-
ing depth, while larger ones incur high costs and context explosion
during extended interactions. Besides, uncontrolled context expan-
sion can also impair model’s ability to comprehend and leverage
previous information in the conversation.

3 METHODOLOGY
Figure 1 illustrates the overall architecture of ContextPilot, which
comprises three key components working in synergy to enable effi-
cient and effective automated context engineering. The framework
employs a decoupled structure that separates context exploration
from answer generation, uses a tool-based memory mechanism
to manage context dynamically, and leverages a reinforcement
learning-based training method to optimize the explorer’s capa-
bilities in context exploration and memory management. In the
following subsections, we introduce each component in detail.

3.1 Decoupled Explorer-Generator Architecture
As shown in Figure 1, ContextPilot adopts a decoupled architecture
that aims to effectively and efficiently find relevant context for gen-
erating accurate answers to repository-level tasks. The architecture
separates the context exploration from the answer generation, and
consists of two specialized models: a small explorer model LLM𝑒

that serves as an automated context discovery agent, and a profi-
ciency model𝑀𝑔 that generates the final answer using the collected
context.

The explorer model is designed to efficiently navigate code repos-
itories through multi-turn interactions. Formally, the exploration
process can be represented as a sequence:

𝐶𝑡 = ⟨𝑝, {𝑟1, 𝑎1, 𝑜1}, {𝑟2, 𝑎2, 𝑜2}, . . . , {𝑟𝑡−1, 𝑎𝑡−1, 𝑜𝑡−1}⟩,

where 𝑝 denotes the initial prompt, and for each turn 𝑖 , 𝑟𝑖 represents
the reasoning step, 𝑎𝑖 the action taken, and 𝑜𝑖 the observation
received. In each turn, the model first generates a natural language
reasoning step before invoking the tools. We develop a scaffold
with three simple and general-purpose context exploration tools
to enable model to explore diverse repositories without domain-
specific customization. Specifically, we employ the following tools:

ContextPilot: Code Context Engineering with Memory-Augmented Exploration Agents LLM4Code ’26, April 12, 2026, Rio de Janeiro, Brazil

Code Repository

...
...

Small Explorer Mdoel

 Actions: View file,
Search keyword

Observations

1

2

3

n

...

P

P

P

P

M1

O1

R1 A1

4 P

Mk

Actions: Update
Memory

Large Generator Model

Answer

5 P M1

R2 A2

R3 A3

R4 A4

R5 A5

Rn An

R1 A1

O1R1 A1 O2R2 A2

O4R4 A4

On-1Rn-1 An-1

Trajectory-level
reward

Turn-level
reward

Rollout×N
GRPO training

Problem Memory

Observations

Action

Reasoning process

P

O

M A

R

Actions: Submit
Discovered Context

Generation
with context

Figure 1: Overview of ContextPilot.

• View Tool which allows the model to inspect specific portions
of a file. It takes two parameters: the filename and the viewing
range (start line number 𝑙𝑠 and end line number 𝑙𝑒). The tool
returns the content within the specified range.

• Search Tool which enables keyword-based searching within
a given directory. It accepts a search keyword 𝑘 and a starting
address 𝑎 (e.g., a directory path). The tool traverses the directory
tree from 𝑎 and returns a list of matching files, including their
full paths, line numbers where 𝑘 appears, and the filenames.

• Submit Tool which is invoked when the model determines that
sufficient contextual information has been gathered to solve the
task. The model converts its collected relevant code snippets into
a formatted answer including their filenames, line, ranges, and a
concise explanation. The formatted answer will then be parsed
and guide the large generator model for answer generation.

3.2 Tool-based Memory Mechanism
To mitigate the high computational cost and performance degrada-
tion induced by excessively long conversations during multi-turn
interactions, as depicted in Figure 1, we introduce a memory update
mechanism that allows the model to invoke an additional tool for
summarizing its exploration history and reducing conversation
length. This tool dynamically manages a fixed-size context window
by enabling selective retention and forgetting of information.

Specifically, when the length of the current context𝐶𝑡 exceeds a
predefined threshold 𝜏 , a prompt is appended to the last observation
𝑜𝑡 , instructing the explorer model to invoke the memory update
tool. This tool requires the model to generate a summary of the
exploration process and key findings based on the existing inter-
action history 𝐶𝑡 and the current memory𝑀prev, which is initially
empty. The generated summary serves as the updated memory

𝑀new for subsequent interactions. Upon invocation, the conversa-
tion sequence is restructured: the sequence of interaction tuples
𝑡𝑖 , 𝑎𝑖 , 𝑜𝑖 is replaced by the refreshed memory𝑀new. Formally, this
transformation can be expressed as:

⟨𝑝,𝑀prev, {𝑡1, 𝑎1, 𝑜1}, . . . , {𝑡𝑘 , 𝑎𝑘 , 𝑜𝑘 }⟩ → ⟨𝑝,𝑀new⟩,

The explorer model continues the exploration process with the
updated memory until it invokes the submit tool. This mechanism
maintains the context window within a fixed size, preventing con-
text overflow and preserving continuity in the exploration process.

3.3 Model Training
To further enhance the small explorer model’s capabilities in repos-
itory exploration and memory updating, we propose a training
methodology that combines cold-start training using trajectories
distilled from large models with reinforcement learning.

First, in the cold start stage, we employ rejection sampling to
collect high-quality training trajectories from the large model act-
ing as an expert explorer agent. Specifically, for each sample in
the training set, we sample 5 trajectory rollouts from the large
model and retain only those that successfully lead to correct final
answers. To improve training data quality, we further post-process
these successful trajectories through the following filtering criteria:
(1) we remove trajectories with invalid tool calls or malformed
actions to ensure executable validity, (2) we filter out trajectories
that are excessively long, exceeding a predefined maximum turn
threshold, to avoid capturing inefficient exploration patterns, (3)
we filter out trajectories that does not invoke the memory update
tool when context 𝐶𝑡 exceeds the threshold 𝜏 . Through fine-tuning
on these trajectories, the small model learns to follow the effective
exploration strategies exhibited by the large model, providing a

LLM4Code ’26, April 12, 2026, Rio de Janeiro, Brazil Shuzheng Gao, Chaozheng Wang, Shuqing Li, Yun Peng, and Michael R. Lyu

strong initialization before transitioning to reinforcement learning
for further improvement.

Then, to avoid model just being overfitted on the expert trajecto-
ries obtained from large models and enhance its generalization, we
employ reinforcement learning method GRPO [5] to empower the
model to explore diverse paths in the interactive environment and
train it on real-world feedback. We design trajectory-level and turn-
level reward signals to optimize the model’s context engineering
strategies. The trajectory-level reward 𝑅traj contains the correctness
reward 𝑟𝑐 which evaluates whether the curated context enables
the generator LLM to produce the correct answer. Second, we in-
troduce an under-exploration penalty 𝑝𝑢 to discourage insufficient
exploration when the final answer is incorrect. Specifically, let 𝑛
denote the number of interaction turns and 𝑘 represent a minimum
turn threshold. When 𝑟𝑐 = 0 and 𝑛 < 𝑘 , we apply a linear penalty
𝑝𝑢 = −𝛼 (𝑘 − 𝑛), where 𝛼 > 0 is a hyperparameter controlling the
penalty magnitude; otherwise, 𝑝𝑢 = 0. At the turn level, we define
𝑅turn to incorporate a penalty 𝑝𝑚 = −𝛽 (where 𝛽 > 0) for each turn
in which memory update should be invoked but is not executed
by the model. Finally, following GRPO [5], the training objective is
formulated as:

L = E𝜏∼𝜋𝜃

[
𝑇∑︁
𝑡=1

(
𝑅traj + 𝑅turn,𝑡 − 𝑅

)
∇𝜃 log𝜋𝜃 (𝑎𝑡 |𝑠𝑡)

]
,

where 𝜋𝜃 denotes the explorer model’s policy parameterized by 𝜃 ,
𝑅 represents the baseline reward computed as the group mean [5],
and (𝑠𝑡 , 𝑎𝑡) denotes the state-action pair at timestep 𝑡 .

4 PRELIMINARY EVALUATION
4.1 Experimental Setup
Datasets and Baselines.We evaluate ContextPilot on two repre-
sentative repository-level code intelligence tasks: repository-level
code generation and repository-level code QA. For code generation,
we use DevEval [7] (cross-file portion) as evaluation benchmarks;
for code QA, we employ LongCodeBench [10] (QA portion) for eval-
uation. Specifically, for each task, we randomly split the original
data into training and testing set with a proportion of 8:2. We com-
pare our method against several baselines: i) Direct Generation: gen-
erating answers without any contextual information; ii) RAG (BM-
25): retrieval-augmented generation using BM-25 sparse retrieval
to obtain relevant code snippet; iii) RAG (Embedding): retrieval-
augmented generation using dense retrieval methods based on
semantic embeddings; iv) Small Model Agent: an end-to-end agent
using a small LLM as the base model; and v) Large Model Agent: an
end-to-end agent using a large LLM as the base model. In baselines
iv) and v), the models do not separate context engineering and
answer generation into two distinct processes. Instead, they use
view and search tools for exploration and directly submit the final
answer once sufficient information has been collected.

Evaluation Metrics.We employ the same evaluation metrics
used in the original datasets for consistency. For DevEval , we em-
ploy Pass@1 tomeasure functional correctness. For the LongCodeBench-
QA, we use Accuracy as the percentage of correct responses over
total multiple-choice questions. For efficiency evaluation, we follow
previous work and use average cost as the metric to measure the

Table 1: Model performance on repo-level code generation.

Approach Performance Cost

Direct Generation 8.3 $0.02
RAG (BM-25) 16.7 $0.02
RAG (Embedding) 17.7 $0.03
Small Model Agent 22.9 $0.05
Large Model Agent 43.8 $3.44

ContextPilot w/o training 36.5 $0.10
ContextPilot 45.8 $0.18

Table 2: Overall model performance on repo-level code QA.

Approach Performance Cost

Direct Generation 57.3 $0.02
RAG (BM-25) 62.9 $0.02
RAG (Embedding) 59.6 $0.02
Small Model Agent 38.2 $0.07
Large Model Agent 66.3 $0.84

ContextPilot w/o training 62.9 $0.13
ContextPilot 66.3 $0.15

overhead of different agent-based methods, where the token costs
for different model sizes are referenced Together AI [1].

Implementation Details. We use Qwen-3-4B-Instruct-2507 as
the small explorer model and use Qwen3-235B-A22B-Instruct-2507
as the large generator model. The value of 𝜏 , 𝑘 , 𝛼 and 𝛽 are set to
6000, 10, 0.5 and 1, respectively. We conduct our experiments on a
server with 4 A100-80G GPUs.

4.2 Experimental Results
The experimental results on both repository-level code genera-
tion and QA tasks demonstrate the effectiveness of ContextPilot in
achieving strong performance with high computational efficiency.

Overall Performance. As shown in Tables 1 and 2, ContextPi-
lot achieves comparable performance to Large Model Agent while
requiring significantly lower cost. On code generation, ContextPi-
lot achieves 45.8% Pass@1, outperforming Large Model Agent’s
43.8% while reducing cost by 95% from $3.44 to $0.18. On code
QA, ContextPilot matches Large Model Agent’s 66.3% accuracy
with only 18% of the cost at $0.15 compared to $0.84. These results
demonstrate that the effectiveness of ContextPilot in code context
engineering for repo-level tasks.

Benefits of Explorer-Generator Architecture. By compar-
ing ContextPilot w/o training against Small Model Agent, we can
find the benefits of our proposed architecture and memory mecha-
nism. ContextPilot w/o training substantially outperforms Small
Model Agent on both code generation, achieving 36.5% compared to
22.9%, with only modest cost increases. This demonstrates that our
architecture effectively leverages the small explorer’s navigation
capabilities while delegating complex reasoning to the proficiency

ContextPilot: Code Context Engineering with Memory-Augmented Exploration Agents LLM4Code ’26, April 12, 2026, Rio de Janeiro, Brazil

model, yielding better results than both retrieval-based methods
and small agent approaches.

Impact of Training. By further training the explorer model,
ContextPilot achieves further improvements with 9.3% on code gen-
eration and 3.4% on code QA. This shows that our training approach
improves the explorer’s navigation strategies, ultimately enabling
ContextPilot to match or exceed Large Model Agent performance
while maintaining substantially lower computational overhead.

5 CONCLUSION AND FUTUREWORK
In this work, we propose a novel framework, ContextPilot, for ef-
fective and efficient context engineering in repository-level code
tasks. ContextPilot integrates three core components: (1) a decou-
pled architecture where a lightweight explorer model discovers
relevant context, while a large proficiency model generates the
final output; (2) a tool-augmented memory mechanism to enable
efficient context management; and (3) a reinforcement learning-
driven training approach to optimize exploration strategies. Exper-
iments on repository-level code generation and question answer-
ing benchmarks demonstrate that ContextPilot achieves competi-
tive or even superior performance while significantly enhancing
computational efficiency. For future work, we plan to refine the
design of our method, conduct more experiments and in-depth re-
sult analysis, and investigate large-scale multi-task training across
diverse repository-level tasks to strengthen the model’s generaliza-
tion across various scenarios.

REFERENCES
[1] Together AI. 2025. Together AI. https://www.together.ai/.
[2] Anthropic. 2025. Introducing Claude 4. Anthropic News May 23, 2025 (2025).

https://www.anthropic.com/news/claude-4
[3] ChatGPT. 2022. ChatGPT. https://chat.openai.com/.
[4] Cognition. 2025. SWE-grep. https://cognition.ai/blog/swe-grep.
[5] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin

Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-r1:
Incentivizing reasoning capability in llms via reinforcement learning. arXiv
preprint arXiv:2501.12948 (2025).

[6] Carlos E. Jimenez, John Yang, AlexanderWettig, Shunyu Yao, Kexin Pei, Ofir Press,
and Karthik R. Narasimhan. 2024. SWE-bench: Can Language Models Resolve
Real-world Github Issues?. In The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net.

[7] Jia Li, Ge Li, Yunfei Zhao, Yongmin Li, Huanyu Liu, Hao Zhu, Lecheng Wang,
Kaibo Liu, Zheng Fang, Lanshen Wang, Jiazheng Ding, Xuanming Zhang, Yuqi
Zhu, Yihong Dong, Zhi Jin, Binhua Li, Fei Huang, Yongbin Li, Bin Gu, and
Mengfei Yang. 2024. DevEval: A Manually-Annotated Code Generation Bench-
mark Aligned with Real-World Code Repositories. In Findings of the Association
for Computational Linguistics, ACL 2024, Bangkok, Thailand and virtual meet-
ing, August 11-16, 2024, Lun-Wei Ku, Andre Martins, and Vivek Srikumar (Eds.).
Association for Computational Linguistics, 3603–3614.

[8] Wei Liu, Ailun Yu, Daoguang Zan, Bo Shen, Wei Zhang, Haiyan Zhao, Zhi Jin, and
Qianxiang Wang. 2024. GraphCoder: Enhancing Repository-Level Code Comple-
tion via Coarse-to-fine Retrieval Based on Code Context Graph. In Proceedings of
the 39th IEEE/ACM International Conference on Automated Software Engineering,
ASE 2024, Sacramento, CA, USA, October 27 - November 1, 2024, Vladimir Filkov,
Baishakhi Ray, and Minghui Zhou (Eds.). ACM, 570–581.

[9] OpenAI. 2023. GPT-4 Technical Report. CoRR abs/2303.08774 (2023).
[10] Stefano Rando, Luca Romani, Alessio Sampieri, Yuta Kyuragi, Luca Franco, Fabio

Galasso, Tatsunori Hashimoto, and John Yang. 2025. LongCodeBench: Evaluating
Coding LLMs at 1M Context Windows. CoRR abs/2505.07897 (2025).

[11] ChaozhengWang, Zezhou Yang, Shuzheng Gao, Cuiyun Gao, Ting Peng, Hailiang
Huang, Yuetang Deng, and Michael R. Lyu. 2025. RAG or Fine-tuning? A Com-
parative Study on LCMs-based Code Completion in Industry. In Proceedings of
the 33rd ACM International Conference on the Foundations of Software Engineering,
FSE Companion 2025, Clarion Hotel Trondheim, Trondheim, Norway, June 23-28,
2025, Leonardo Montecchi, Jingyue Li, Denys Poshyvanyk, and Dongmei Zhang
(Eds.). ACM, 93–104.

[12] Yanlin Wang, Yanli Wang, Daya Guo, Jiachi Chen, Ruikai Zhang, Yuchi Ma, and
Zibin Zheng. 2025. RLCoder: Reinforcement Learning for Repository-Level Code
Completion. In 47th IEEE/ACM International Conference on Software Engineering,
ICSE 2025, Ottawa, ON, Canada, April 26 - May 6, 2025. IEEE, 1140–1152.

[13] Di Wu, Wasi Uddin Ahmad, Dejiao Zhang, Murali Krishna Ramanathan, and
Xiaofei Ma. 2024. Repoformer: Selective Retrieval for Repository-Level Code
Completion. In Forty-first International Conference on Machine Learning, ICML
2024, Vienna, Austria, July 21-27, 2024. OpenReview.net.

[14] John Yang, Carlos E. Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao,
Karthik Narasimhan, and Ofir Press. 2024. SWE-agent: Agent-Computer Inter-
faces Enable Automated Software Engineering. In Advances in Neural Information
Processing Systems 38: Annual Conference on Neural Information Processing Systems
2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15, 2024, Amir Glober-
sons, Lester Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M.
Tomczak, and Cheng Zhang (Eds.).

[15] Fengji Zhang, Bei Chen, Yue Zhang, Jacky Keung, Jin Liu, Daoguang Zan, Yi Mao,
Jian-Guang Lou, and Weizhu Chen. 2023. RepoCoder: Repository-Level Code
Completion Through Iterative Retrieval and Generation. In Proceedings of the
2023 Conference on Empirical Methods in Natural Language Processing, EMNLP
2023, Singapore, December 6-10, 2023, Houda Bouamor, Juan Pino, and Kalika Bali
(Eds.). Association for Computational Linguistics, 2471–2484.

[16] Kechi Zhang, Jia Li, Ge Li, Xianjie Shi, and Zhi Jin. 2024. CodeAgent: Enhancing
Code Generation with Tool-Integrated Agent Systems for Real-World Repo-level
Coding Challenges. In Proceedings of the 62nd AnnualMeeting of the Association for
Computational Linguistics (Volume 1: Long Papers), ACL 2024, Bangkok, Thailand,
August 11-16, 2024, Lun-Wei Ku, Andre Martins, and Vivek Srikumar (Eds.).
Association for Computational Linguistics, 13643–13658.

https://www.together.ai/
https://www.anthropic.com/news/claude-4
https://chat.openai.com/
https://cognition.ai/blog/swe-grep

	Abstract
	1 Introduction
	2 Related work
	2.1 LLMs for Software Engineering
	2.2 Context Engineering in SE tasks

	3 Methodology
	3.1 Decoupled Explorer-Generator Architecture
	3.2 Tool-based Memory Mechanism
	3.3 Model Training

	4 Preliminary Evaluation
	4.1 Experimental Setup
	4.2 Experimental Results

	5 Conclusion and Future Work
	References

