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Abstract

Modern supervised models require a large amount
of labeled data to be successful. In the meta-
learning context, the amount of human supervi-
sion can be reduced if the model can transfer past
knowledge to facilitate future training.

In this work, we approach this challenge through a
novel active learning framework that can quickly
learn a new task by asking commonsense ques-
tions to the human oracle. The questions are gen-
erated as first-order logic rules that capture the
common patterns of the new class with the exist-
ing concepts learned in previous tasks. The rules
are highly interpretable such that human oracle
can evaluate them without going through the in-
dividual samples they apply to, leading to less
human supervision. Our method is evaluated on
the Visual Genome dataset, which achieves the
same performance with significantly fewer oracle
queries than several strong baselines.

1. Introduction

One of the hallmarks of human intelligence is the ability to
learn continuously, and accumulate knowledge from a se-
ries of tasks that enable future learning (Chen & Liu, 2016
Mitchell et al.| [2018). Compared to the modern machine
learning (ML) methods, such capability enables humans to
acquire new knowledge with only a few samples. For many
real-world applications, the cost of labeling a large amount
of data becomes prohibitive. This raises a challenging ques-
tion: can the ML agent learn to utilize prior experiences to
address a new tasks where labels are scarce?

A wealth body of researches is proposed for advancing the
current machine learning methods towards this goal. For
example, meta-learning (Vinyals et al.| |2016; [ Munkhdalai
& Yul 2017; |Santoro et al.l 2016; [Finn et al.| [2017) seeks
to train a model on a variety of tasks such that the model
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can adapt to a new task with a few labels. Active learning
(AL) methods (Joshi et al., [2009; |Contardo et al., 2017}
Fang et al} 2017 [Bachman et al.,2017; Konyushkova et al.}
2017), on the other hand, approach this by building-in the
awareness of supervision cost into the model such that the
cost is reduced by choosing more effective samples. Life-
long learning (Mitchell et al.,|2018)) investigates the learning
of a sequence of new tasks, where the model can transfer
knowledge from previous tasks to aid the future task.

Inspired by the recent work on learning-by-asking-
questions (Yang et al.l 2018} Shen et al.} 2019} Misra et al.,
2018).We consider this problem in an interactive learn-
ing scenario, which we refer to as the learning-by-asking-
commonsense-question framework. In this scenario, our
agent is tasked to learn a set of new concepts by asking
questions to the human oracles. And similar to the meta-
learning, the agent can access a knowledge graph which
encodes the existing knowledge on the related concepts and
relations. The goal is to utilize the knowledge graph such
that the generated questions lead to a more efficient learning
on the new tasks.

To achieve this goal, our agent is capable of discovering
the common patterns of the new concept by associating it
with the existing ones on a knowledge graph. Such patterns
are represented as first-order logic rules which guarantee
to generalize to many samples. To interact with the human
oracle, the agent asks the commonsense questions that are
translated from the rules. Evaluating such question is effi-
cient, since the human oracle does not need to inspect the
individual instances that the rule applies to, which leads to
a reduction in human supervision.

We evaluate our method on a set of visual object classifica-
tion tasks together with several strong AL and meta-learning
baselines. Our method can generalize to new classes with
significantly fewer queries to the oracle.

2. Preliminaries
2.1. Knowledge representation

In this work, we consider the knowledge and data as a set
of object instances and relations, essentially in the form of
a knowledge graph (KG). For example, Visual Genome (Kr{
1shna et al.| |2016)) consists of 100K images over 80K object
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Figure 1: Learning a new class Car by asking common-
sense questions to the human oracle. For each new task, the
agent is provided with a small set of labeled target class.
The agent learns to capture the patterns of the new concept
with those concepts and relations that it already acquired,
and represent them into first-order logic rules. The rules
are translated into commonsense questions and sent to the
oracle for labeling.

classes. As shown in Figure[2] apart from the pixel infor-
mation, each image in the dataset is also described with a
scene-graph. The graph consists of objects as the graph
nodes and their spatial or semantic relations as graph edges.

Formally, a KG is defined over a set of predicates P € P =
U U B and entity space x € X where z € R? Object
classes are unary predicates P € U such that each P is a
mapping P : R? +— s € [0,1], and relations are binary
predicates P € B with mapping P : R? x R? — s € [0, 1].
By using the one-hot entity encoding v, € {0, 1}¥l, each
predicate P can be parameterized into an adjacency matrix
M € {0,1}I¥IXI¥] where m;; = 1 indicates (z;, P, x;)
exists in the graph. In the case of unary predicate, the matrix
is diagonal such that m;; = 1 indicates (x;, P, z;) (we
duplicate the same variable for notation consistency) exists
in the KG.

2.2. First-order logic rules as graph sub-patterns

Given the KG, one can express knowledge as first-order
logic (FOL) rules. A FOL rule consists of (i) a set of predi-
cates defined in P, (ii) a set of logical variables such as X, Y
and Z, and (iii) logical operations {A, V, —}. For example,

Car(X) <Has(X,Y) AWheel(Y) (D
AHas(X,Z) AWindow(Z)

involves predicates Car, Has, Wheel and Window. Com-

ponents such as Car(X) are called atoms which corre-

spond to the predicates that apply to the logical variables.
Each atom can be seen as a lambda function with its log-

Rules as graph sub-patterns

GaH(X) — (Has (X.Y) )» Wheel(Y) A[Has(X,2)}» Window(2)

Figure 2: In Visual Genome dataset, images are annotated
with objects and the relations among them. This information
can be represented as a scene-graph. And the goal of our
method is to recognize the sub-patterns (i.e. rules) in the
graph with respect to the target class Car.

ical variables as input. This function can be evaluated
by instantiating the logical variables such as X into the
object in X. For example, in Figure [2| we can evalu-
ate Car(nd3/X) by instantiating X into node nd3. This
yields 1 because the node nd3 is labeled as a Car. Sim-
ilarly, we have Car(ndl/X) = 0 and for binary case
Has(nd3/X,ndl/Y) =1.

The outputs of each atoms are combined using logical opera-
tions {A, V, =} and the imply operation p «— ¢ is equivalent
to p V —q. Thus, when all variables are instantiated, the
rule will produce an output as the specified combinations
of those from the atoms. For example, let r(X,Y, Z) de-
notes Eq.(1)), then we have r(nd3/X,ndl/Y,nd2/Z) = 1.
In this way, the rule is essentially encoded to represent the
knowledge that “a car is something that has wheels and win-
dows”. And through the usage of logical variables, the state-
ment becomes a commonsense as it represents the “lifted”
knowledge that does not depend on the specific data

2020).

Such representation is beneficial because (i) the rules are
highly interpretable and can be translated into natural lan-
guage for human assessment, and (ii) the rules guarantee to
generalize to many examples.

3. Problem Set-up

We imagine the agent learns similarly as in human learn-
ing. In the beginning, the agent has access to a background
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KG which consists of the concepts (e.g. Wheel, Window)
and relations it already knows. When presented with a new
concept (e.g. Car), the agent tries to associate it with the
known concepts and generalize by proposing the common-
sense statement that reflects the common pattern, e.g. “Is
something that has wheels and windows a Car?”. From
the teacher’s perspective, answering such a statement is
more effective than showing the individual Car images to
the learner, as the former guarantees to generalize to all Car
samples whenever wheel and window are present.

In summary, the goal of our method lies at the intersection
of lifelong learning and active learning: that is to utilize
the background knowledge to facilitate the learning of
a new task such that the human supervision is minimal.

Formally, the agent is given a knowledge graph G =
(Pxg, Dxg) that consists of facts Dxg = {{(x, P,x’)} for
predicates P € Pxg. We define the learning problem as
learning a set of new tasks L = {L1,..,L,}. Each task
is defined as L; = (P;, D;, H;,Y:), where P; is the target
predicate to be learned, D; is a small set of labeled data
for warming-up, and the agent has the access to the rest of
unlabelled data in #; whose ground-truth labels are stored
in Y;. Here, we assume the target predicates are all unary,
i.e. each task is a visual object classification problem. But
this can readily generalize to binary cases as well, which
corresponds to a relational learning problem.

The agent learns the target object classes by training a
learner model (e.g. MLP) f,,(x) : X — s € [0,1] pa-
rameterized by uﬂ Apart from learning from the labelled
data in D;, the agent can also generate queries ¢ € (Q; with
a policy model mg(q|H;, KG) that is parameterized by 6.
Queries are submitted to a human oracle O for evaluation
and the feedback is reflected as the label information on H,;,
which we denote as YZ

Overall, this lifelong active learning (KG, L, O) aims at
solving the tasks L by using the existing knowledge as well
as the online supervisions from oracle O. Let fw\Y denote
the learner model trained on the obtained labels from all
tasks. We define the loss of each task L; as

Llfup ) = o S XEnt(fyp@),1), @

where y is the true label. The goal is to minimize the aver-
aged loss of L within a fixed number of queries, i.e. budget.

1
argmlnEZ£(fw‘§,,’Hi) 3)

w,0

st. |Qi| < B, 1=1,..,n,

ISince each task involves only one class, the agent only learns
a single model that does multi-class classification for all the tasks.
This is different from some meta-learning works which assume
different models will be learned for different tasks.
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Figure 3: The procedures and components involved in the
learning-by-asking-commonsense-question framework.

where B is the query budget.

3.1. Commonsense questions as queries

In traditional active learning methods, query ¢ corresponds
to a specific sample in #,; that needs to be labeled. This is
done by treating query policy as generating a distribution
over the hidden samples 7(x|H;),x € H;, where KG is
not used. Alternatively, we propose to use commonsense
questions as queries. Formally, apart from the learner model
fw, the agent now maintains the query model as a rule
learner @g(r|x, P;, KG),x € D;. This is a parameterized
model that learns on the warm-up set D; and generates rules
for target predicate P;.

For each task L;, the agent solves the learning problem with
the following steps (shown in Figure [3):

* Rule learning: the agent fits the rule learner model
pp on dataset D; and produces a set of rules R; =
{’I"l, Tro, }

* Rule evaluation: the agent selects the top B rules R
with policy r ~ m(r|R;). The rules are translated into
commonsense questions and sent to the oracle O(r)
for evaluation.

* Auto-labeling with rules: the agent uses the evaluated
rules to label the data © € H,;, ie. I(y|z,Rp,O),
leading to a set of estimated labels Y;.

e Training the learner model: the agent trains the
learner model f,, using the auto-labeled data.

¢ Evaluation: after training on all the tasks, the learner
model is evaluated with Eq.(3).

4. Related Work

The learning-by-asking-commonsense-question method lies
at the intersection of several domains. Here, we compare
our problem set-up with those in the following domains to
better illustrate our motivation.

Active learning (AL) investigates the learning problem
where the samples need to be selected from an unlabeled
dataset to be labeled by an oracle. Formally, for each task L;,
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AL methods propose a fixed policy 7 (g|#H,;) that guides how
a sample is picked from #; to learn f, () more effectively.
Common strategies include maximum entropy (Joshi et al.|
2009) and expected model change (Settles et al., 2008)).

Meta active learning or learning-to-active-learn consid-
ers the query policy generated by a parametric model and
can be learned online in the active learning process (Con{
tardo et al.,|2017; [Fang et al.,|2017; Bachman et al., [2017;
Konyushkova et al.} 2017). For example, Learning Active
Learning (LAL) (Konyushkova et al., |2017) proposes to
learn a policy model 7y(q|#;, D;). The policy is parame-
terized by a learnable random forest model. It selects the
next sample to label by monitoring the performance of the
current learner model on the revealed set and the goal is to
train the policy model such that the next query improves the
learner model.

Meta-learning and few-shot learning involve learning a
meta-trainer that can train the learner model to quickly adapt
to a new task with few labels provided (Vinyals et al.,|2016;
Munkhdalai & Yul, [2017; |Santoro et al., [2016; |[Finn et al.,
2017). These works are studied in the N-way K-shot learn-
ing problem which is similar to the one stated in section 3}
the learner is trained on a set of background classes (i.e.
Pxg in our setting), and is then evaluated on N unseen
classes where the model is allowed to fine-tune itself with K
samples for each class. Different from AL methods, meta-
learning makes use of the background data but does not
select the K-shot samples actively, which is equivalent to
a random policy 7. For example, Model-Agnostic Meta-
Learning (MAML) (Finn et al., 2017)) learns a global param-
eter initialization w on the background set, such that the
learner model f,,(x|w) can generalize on the new classes
with K-shot samples.

Learning by asking questions. Our method is related to
the recent advances in learning-by-asking-questions (Yang
et al., | 2018; Misra et al.| 2018)). Similar to our setting, the
agent in this framework learns by asking questions to the
oracle. However the goal of these methods is to enable
the model to interact with an open-domain environment
with natural language, thus (i) the questions are localized to
each data sample and (ii) the framework does not limit the
number of questions can be asked by the agent. This is very
different from our setting where the goal is to reduce human
supervision by asking questions that generalize to many
samples. (Shen et al.,|2019) claims to reduce the labeling
efforts but the task is restricted to the image captioning.

Lifelong learning investigates the learning of a new task
with background knowledge. Many works focus on alle-
viating the catastrophic forgetting problems (Li & Hoiem),
2017}, Kirkpatrick et al., [2017; |Zenke et al., 2017} [Lopez-
Paz & Ranzato, [2017) when learning the new task. Our
method is closely related to the never-ending learning

(NELL) (Mitchell et al.,|2018)) which proposes a new learn-
ing paradigm that can continuously acquire new skills. The
method represents data as knowledge graphs, and train the
learner model by using the constraints posted by first-order
logic (FOL) rules as the supervision signal. However, the
learning tasks are pre-defined on the text data and are fixed
throughout the learning process. The learning of new con-
cepts is conducted offline, and the learned classes are inte-
grated into the system manually.

Multi-hop reasoning on knowledge graph. Learning the
common sub-patterns in the knowledge graph (i.e. the rule
learner model ) is studied extensively in the literature
of multi-hop reasoning (Guu et al., 2015} Lao & Cohenl
2010; Lin et al., 2015}, |Gardner & Mitchell, 2015} |Das et al.|
2016; Yang & Song, 2020). This task is generally framed
as a inductive logic programming problem which seeks to
represent these patterns into first-order logic rules. We will
discuss the detailed procedure in the next section.

5. FOL Rule Learning on Scene-Graphs

We show that the rule learning on scene-graph can be formu-
lated as multi-hop reasoning problem which can be solved
by many existing approaches.

For the scene-graph dataset, G essentially consists of a set
of isolated sub-graphs each corresponding to the scene of
a specific image. Let X, be the entity domain of a single
scene-graph ¢ € KG, and similarly P, = U, U B, be
the predicate domain. For an object x € X, we want to
learn rule that predicts if it belongs to a target predicate P*.
This can be formulated as finding a relational path z’ i)

P . .
... — x which starts from a particular node &’ € X, and

ends at the target node x, where P ¢ By, t =1,..,T.
Finding such path is equivalent to learning a chain-like
entailment rules (Yang et al.,[2017)

P*(X) « POX, V) A ... APD(Y, 1, X),

where the knowledge is encoded as “if the path exists, then
x belongs to P*”. Note that the rule only encodes the
positive case, meaning if the path does not exist, P*(x) is
then undetermined rather than false because the rule fails to

apply.

To find such rules, recall that v, denotes the one-hot vector
of x with the dimension of |Xg\. Then, we can represent
each hop in the relational path as matrix multiplication,
such that the (¢)th hop of the reasoning along the path is
computed as

MON v® = MOyt

where M ®) denotes the adjacency matrix of the predicate

used in (¢)th hop. One can verify that the jth element v](-t)
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in v(*) is the count of unique paths from z to x; (Guu et al.,
2015). After (T') steps of reasoning, we compute the score
P*(x) being true as

T
score(x, ') = v, H MY v,
t=1

The goal is to find (i) a starting point ’ and (ii) a common
sequence of matrix multiplication M ®) ¢ =1,..,T, such
that Eq.(4) is maximized for all the labeled samples x €
D;. This problem can be relaxed as learning the weighted
sums of all possible paths. We parameterize the soft node
selection as

Vg = Z 5](60) M, - 17

keu,

where (0 = | 50), . \(Z?{) ‘]T is the attention vector that
9

averages over the starting node, and 1 is the vector with

elements as 1. Similarly we parameterize the soft path

selection as

T t
score(vg, a, B) = Z alt) H Z /6’,(:) My, - vy |,

t'=1 t=1keB,
“4)

where @ = [a(l), ..., aM]T is the path attention vector,

and ) = | gt), o 5‘(;) ‘]T is the matrix attention vector at
9

(t)-th step, and we denote all the attentions as («, 3).

T)}

These attentions can be generated differentiably by learning
a parametric model. For example, NeuralLP (Yang et al.,
2017) uses an RNN controller to generate the sequence of at-
tention vectors with v,, as the initial input. And NLIL (Yang
& Songl [2020) generates attentions with a stacked Trans-
former module with predicate embeddings as the input.

6. Model Implementation

Rule Learner py: We use the Neural Logic Inductive
Learning (NLIL) (Yang & Song}, 2020) as the rule learner
model which we denote as ¢y. The learning objective of
task L; is defined as maximizing the score defined Eq.(@)
for the samples in D;

arg max Z score(vg, , 8),
xeD;

a,f = @0(vw|ngpg)-

After training, we retrieve the discrete rules for later infer-
ence. This is done by taking the argmax of the attentions
(c, B) over the selection dimensions. The resulting one-hot
vectors then explicitly defines an entailment rule . With
a slight abuse of the notations, we denote this process as
r < @o(r|e, P, KG).

where

Query generation 7(r|R;): the agent builds the rule set
R; by collecting all the rules used in inferring the target

samples in the warm-up set. With a limited budget, the
query policy should prefer to pick rules that are more likely
to improve the performance for evaluation. To keep the
framework efficient, we resort to a simple approximation:
we rank each of the unique rules with their frequencies in R;
and submit the top-B of them as queries. The assumption
is that a frequently used rule is likely to apply to more data
in the hidden set and can thus lead to better performance.
As we will demonstrate it in the experiments, this intuition
is indeed effective. In human experiments, the rules are
translated into the natural language using a template-based
method.

Synthetic oracle O(r): due to the scale of the problem, full
human evaluation is costly. We adopt the protocol in (Shen
et al., 2019). On one hand, we implement a synthetic oracle
that simulates the question asking process with the human.
The oracle maintains a separate labeled set sampled from
the target classes. During training, it evaluates the individual
rules by applying them to the samples and computes the top-
1 precision scores (i.e. P@1) with respect to the ground-truth
labels. And the scores are returned to the agent as the oracle
feedback. On the other hand, we verify the synthetic oracle
in the offline setting: we collect a fixed set of rules generated
by the model and evaluate them with human oracle. The
results are then compared to those generated by the synthetic
one for verification.

Labeling samples with rules [(y|z, Rz, O): the rules are
labeled with their precision scores which indicate the con-
fidence of their outputs when they are applied to the sam-
ples. For sample labeling, we consider the rule as a noisy
auto-labeling function, and the precision score as its ran-
dom acceptance threshold. Formally, for each target sam-
ple x € H;, if r(vg) = 1 for r < wo(r|z, P;, KG) and
r € Rp, the label is accepted with the probability of O(r).
Recall that the entailment rules only recognize the positive
samples, thus the estimated label Y; contains only positive
labels. To train the learner model, the agent augments Y;
with the same number of negative samples from the back-
ground set.

This process can potentially lead to (i) false negatives, where
positive samples are not recognized because of the random-
ness, and (ii) false positives, where the rules over-generalize
to other object classes. In the experiment, we will investi-
gate the sample quality of the auto-labeling process and the
impact of the false samples.

7. Experiments

In the experiments, we evaluate our method in a visual object
classification scenario. For the background knowledge KB,
the agent is given a set of known object classes and common
spatial and semantic relations. The agent is then tasked to
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Figure 4: Showcases of using the learned rules to explain the target objects.

learn another set of new object classes where each comes
with only a small set of labeled data.

7.1. Dataset

We conduct experiments on the Visual Genome dataset pro-

vided in (Krishna et al 2016). The original dataset is highly

noisy (Zellers et al.| [2018)). Here, we use its pre-processed
version provided in the GQA dataset (Hudson & Manning],

[2019). We further pre-process the relational data by filtering
out the relation types that occur less than 1500 times. The
remaining set consists of 31 relation categories. For each
scene-graph, we filter out the isolated nodes that are not
connected by those relations.

For the benchmarks, we rank all the object classes by their
frequencies and keep the top 120 most frequent classes.
We use the first 50 classes as background knowledge. All
methods can access the entire labeled set of those classes
for pre-training. Then all methods are evaluated on the rest
of the 70 classes where only a small warm-up set is given
for each class.

Throughout the training, the agent can access all the ground-
truth relational data regardless of the class label of the object
they connect to. In other words, the model can utilize the en-
tire scene-graph information except for the node labels that
belong to the 70 classes. Apart from the warm-up set, the
model can access another set of labeled data with the same
size as the warm-up set for validation. The rest of the labeled
data of the target classes are split with a 90%/10% ratio into
the hidden set and the testing set. Since the dataset only
consists of positive samples, the hidden set is augmented
with another set of objects randomly sampled from other
target classes, such that the number of positive and nega-
tive samples are equal. All experiments are conducted on a
machine with 17-8700K, 32G RAM and one GTX1080ti.

1 Question evaluation

0.8
@0.6
o 04

® human = synthetic

5 10 15 20 25 30 35
# of questions

Figure 5: Human and synthetic oracle evaluation on the 35
FOL rules. Questions are sorted in descending order with
respect to the oracle score.

7.2. Comparison of two types of supervision

As one of the key motiva-
tions, we argue that eval-
uating the commonsense
statements (i.e. FOL
rules) is more efficient
than sample-wise label-

Table 1: Average time taken
in evaluating the individual
samples, the commonsense
questions and the amortized
time of the questions.

Eval.

Avg.

) Std.(s) ing since the human or-

type time (s) acle does not need to go
Sample 3.7 1.8 through the specific sam-
Rule 8.3 3.1 ples. To see this, we

adopt a similar protocol
as in (Shen et al| 2019).
We quantify the cost of
human supervision as the “wall clock time taken” for the
oracle in labeling the samples or rules.

Amortized 0.03 -

We collect 35 FOL rules learned from the warm-up set and
translate them into natural language questions and put them
into a survey form. We invite 25 graduate students to eval-
uate these statements. For each question, the participants
choose from a 4-point scale that reflects how they think
the rule is generally true or not (i.e. the precision score).
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Figure 6: Human evaluation score distributions of 4 ques-
tions. The red bar corresponds the score of the synthetic
oracle.

For sample-wise labeling, the participant is shown with 50
images randomly sampled from the target classes. Target
objects are highlighted with the bounding boxes and the
participant is asked to mark true or false on whether or not
the image patch belongs to the target class.

We summarize the average labeling time of two types of
supervisions in Table [T Rule evaluation generally takes
8.3s which is 2x longer than the sample-wise labeling. In
the experiment, this time is amortized as the rule applies
to many samples. We can consider the “per-sample” cost
by dividing the time with the total number of applicable
samples. This leads to the 0.03s per-sample cost with rule
evaluation as the supervision, which is 100x faster than the
sample-wise counterpart.

7.3. Synthetic oracle vs. human

We summarize the synthetic oracle and human evaluation
scores on the 35 rules in Figure [5] The 4-point scores in
the human survey are converted to {1, 0.66,0.33,0} of the
P@1 scores and are averaged across participants for each
question. Overall, the human evaluations tend to agree
with that of the oracle: we fit the scores with a linear trend
line (in light blue) and it is close to the score curve of the
oracle. However, there are also several outliers where the
two disagree significantly.

To see this, we illustrate the score distributions of specific
questions in Figure [§] The oracle and the human agrees
on the first two questions in the first row. However, for the
questions related to Train and Arm, the oracle tends to
over-estimate. We find many of them are due to the inherent

bias presented in the dataset. For example, in real-life, a
Chair does not usually have arms, but the Arm object is
constantly labeled as part of the Cha i r object in the dataset,
leading counter-intuitive statements. Here, we leave this
problem for future investigation.

7.4. Visual Genome Benchmark

The goal of this benchmark is to evaluate the query-
efficiency of our methods in learning new concepts that
minimize the loss in Eq.(3).

Baselines: We consider 4 baselines from two domains: we
compare 3 sample-wise active learning methods (i) Ran-
dom, baseline method that submits random samples to the
oracle as queries, (ii) Entropy, method that picks the sam-
ple with high entropy as the query and (iii) LAL, a meta
active learning method that learns the sampling policy on-
the-fly during the query process. We also compare against
a meta-learning method (iv) MAML which learns a meta
parameter initialization for the learner model that leads to
the faster convergence in the future task.

Learner model: We apply all methods to two supervised
learners: (i) MLP is a standard multi-layer fully connected
classifier that takes the RCNN feature (provided in (Hud/
son & Manning| 2019)) of the object and outputs its class
label. And (ii)) GCN (Kipf & Welling, [2016) is the graph
convolutional network that reads in the scene-graph and
RCNN features as the node attribute and outputs the node
embedding of the target object which is then fed into an
MLP model to produce its class label. Our method uses
the scene-graph on the active learning level. To make the
comparison fair, we include this learner such that methods
such as MAML and LAL can utilize and transfer the graph
information as well. For LAL, the method builds on top of
the internal features of a random forest learner model. To
keep consistent with other methods, we save the samples
that are selected during the meta-active learning phase and
train the two learner models offline for evaluation.

Evaluation: For all experiments, we set the size of the
warm-up set to 25 and vary the budget for each target class
between [1,500]. For each budget setting, We run all meth-
ods to learn the target 70 object classes. We compare the
performance by showing the micro-averaged R@1 score of
all classes, i.e. the top 1 recall of the learner model. Note
that our method can learn rules at most the size of the warm-
up set (i.e. one unique rule for each sample), thus for those
budgets that exceed 25, we fill in queries from the random
policy.

We summarize the results of MLP and GCN in Table [2]
and Table For MLP learner, our method outperforms
the baselines significantly on small budgets. We find the
improvement moving from budget 1 to 10 is small, and
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Table 2: The micro-averaged R@1 scores of 5 Table 3: The micro-averaged R@]1 scores of 5
methods on learning the 70 object classes with methods on learning the 70 object classes with

MLP learner and varied budget size.

GCN learner and varied budget size.

Method Budget Method Budget

W/IMLP s g 50 200 500 WOCN s 500 50 200 500
Random 047 047 05 052 057 0.6 Random 059 06 0.62 063 065 0.67
Entropy 047 047 051 052 058 061 Entropy 059 059 0.62 0.64 065 0.67
LAL 047 048 053 055 059 06 LAL 058 058 061 064 0.67 0.67
MAML 048 048 05 054 058 06 MAML 059 061 061 063 064 065
Ours 056 057 058 0.6 062 063 Ours  0.62 0.62 062 065 065 065
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Figure 7: The ratio of true positive, false negative and false
positive samples resulting from the auto-labeling for each
target class. The ratio is calculated w.r.t the number of
positive samples per class and can be greater than 100% if
false positives are included.

this is due to that a large portion of the samples is usually
covered by less than 3 rules. Additional rules typically
cover rare patterns that only occur less than 50 times for
each class. And by filling in random queries starting from
budget 25, the performance improves at the rate similar to
other baselines.

For GCN learner, the performance lead by our method is
smaller, which is sensible because GCN is capable of gener-
alizing over similar graph patterns. And since the relational
data are all revealed in this benchmark, the model can gen-
eralize with significantly less node label data. On the other
hand, we find some of the baselines outperform our method
on a large budget, this is due the auto-labeling introduces
the false positive samples and thus causes the performance
to plateau.

Remarks: Comparing the number of the budget is techni-
cally unfair for the baselines because the rule carries more
information than a single sample label. However, we note
that the main motivation of this work is to propose an alter-
native supervision mechanism such that the human effort is
reduced. In this way, as illustrated in section[7.2] being able
to carry more information in a single query is by itself an
advantage over the traditional paradigm.

7.5. Errors analysis on auto-labeling

As indicated in section [6] using the rules for auto-labeling
can lead to both false negatives and false positives. We
summarize these two types of errors when the agent runs
with the budget of 5, and illustrate them for each class in
Figure[7} Here, the ratio is measured with respect to the size
of the positive sample per class and can be greater than 100%
if many false positives are included. In general, we find the
false positives counts for a small portion of the labeled data,
which is also verified in the benchmark experiment.

In total, the rules recover 43.5% of the positive data. 23.4%
of them are false negatives due to the random acceptance
strategy, and the rest of the 23% does not apply to the learned
rules. And with a comparable size of the negative sample
pools, the agent only includes 6.7% of them as false positive
samples.

8. Conclusion

One of the key characteristics of human learning is the abil-
ity to associate the new concept with the acquired ones and
generalize over a few examples. In this work, we propose
a novel active learning method to simulate this capability
in the visual object classification scenario, i.e. the learning-
by-asking-commonsense-question framework. Given a new
task, the agent can generate commonsense questions by us-
ing the existing knowledge. In the experiments, we show
that evaluating such questions leads to a significant reduc-
tion in human supervision.
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